Radiation

- occurs when unstable nuclei of atoms decay and release energy or particles.
- can cause burns, cancers, and death.

- * Radiation- energy or particles that can travel through space & matter.
- ☆is measured in rem or mrem
- ★Doses above 100 rem cause the first signs of radiation sickness Symptoms of radiation sickness
- > loss of hair.
- > vomiting> loss of white blood cells.
- > headache
- Half of all people exposed to 450 rems die or will die eventually due to cancer or leukemia
- doses of 800 rems or more are always fatal.

1000 mrem = 1 rem

Radiation Source	Amount of Rem
standing outside at-sea level	26 mrem
food	20 mrem
simple x-ray dental x-ray	l mrem
hip Xray	65 mrem
CAT Scan	110 mrem
living by a nuclear power plant	0.02 mrem

Unstable nuclei are considered radioactive
Unstable isotopes are called radioisotopes
Radioactive Decay occurs as these nuclei
break down into simpler elements/particles
Transmutation is the process of
radioactive decay occuring

3 types of Decay: Alpha Beta Gamma

Alpha decay roults in the loss of a Helium nucleus from anisotope.

Show the products of Alpha decay of the following

Radium-220

Radon-219

Write the Equation for the beta decay of the following:

Chromium-55,
$$55$$
 \rightarrow 55 \rightarrow 55 \rightarrow 55 \rightarrow 25 \rightarrow 1 \rightarrow 1

Radioactive Half-Life

A period of time in which half the nuclei of a radioactive isotope will decay

Sample Problem

The half-life of Sodium-24_is 15 hours

- This means that 1/2 of the Sodium-24 will decay in 15 hrs.
- How much would you expect to be left after 45 hours if you started with 200 grams?

Formula

time elapsed 11 howmany 1/2 lives have elapsed (n)

1/2 life = how many times to divide mass by 2

$$\frac{45}{15} = 3 = n$$
 $\frac{45}{15} = 3 = n$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

The half-life of $\frac{241}{95}$ Am is 458 years. How much of a 12.0 g sample would remain after 1374 years?

$$\frac{ET}{HL} = n$$

$$\int_{nihial mass}^{m_o} \left(\frac{1}{2}\right)^n$$

$$\int_{nihial mass}^{m_o} \left(\frac{1}{2}\right)^3 = \left(\frac{1}{5}\right)^3 = \left(\frac{1}{5}\right)^3$$

How is half-life information used in carbon dating?

The half-lives of certain types of radioisotopes are very useful to know. They a us to determine the ages of very old artifacts. Scientists can use the half-life of Carbon-14 to determine the approximate age of organic objects less than 40,000 years old. By determining how much of the carbon-14 has transmutated, scientist can calculate and estimate the age of a substance. This technique is known as Carbon dating. Isotopes with longer half-lives such as Uranium-238 can be used to date even older objects